RSS Uni. Porto Self-discharge mitigation in a liquid metal displacement battery

  • Criador do tópico Repositório Aberto da Universidade do Porto
  • Start date
R

Repositório Aberto da Universidade do Porto

Guest
Breve resumo:
Title: Self-discharge mitigation in a liquid metal displacement battery
Abstract: Recently, a disruptive idea was reported about the discovery of a new type of battery named Liquid Displacement Battery (LDB) comprising liquid metal electrodes and molten salt electrolyte. This cell featured a novel concept of a porous electronically conductive faradaic membrane instead of the traditional ion-selective ceramic membrane. LDBs are attractive for stationary storage applications but need mitigation against self-discharge. In the instant battery chemistry, Li|LiCl-PbCl2|Pb, reducing the diffusion coefficient of lead ions can be a way forward and a solution can be the addition of PbO to the electrolyte. The latter acts as a supplementary barrier and complements the function of the faradaic membrane. The remedial actions improved the cell's coulombic efficiency from 92% to 97% without affecting the voltage efficiency. In addition, the limiting current density of a 500 mAh cell increased from 575 to 831 mA cm−2 and the limiting power from 2.53 to 3.66 W. Finally, the effect of PbO on the impedance and polarization of the cell was also studied.​



Info Adicional:
Title: Self-discharge mitigation in a liquid metal displacement battery Abstract: Recently, a disruptive idea was reported about the discovery of a new type of battery named Liquid Displacement Battery (LDB) comprising liquid metal electrodes and molten salt electrolyte. This cell featured a novel concept of a porous electronically conductive faradaic membrane instead of the traditional ion-selective ceramic membrane. LDBs are attractive for stationary storage applications but need mitigation against self-discharge. In the instant battery chemistry, Li|LiCl-PbCl2|Pb, reducing the diffusion coefficient of lead ions can be a way forward and a solution can be the addition of PbO to the electrolyte. The latter acts as a supplementary barrier and complements the function of the faradaic membrane. The remedial actions improved the cell's coulombic efficiency from 92% to 97% without affecting the voltage efficiency. In addition, the limiting current density of a 500 mAh cell increased from 575 to 831 mA cm−2 and the limiting power from 2.53 to 3.66 W. Finally, the effect of PbO on the impedance and polarization of the cell was also studied.



Autor:




Clica para continuares a ler...
 
Voltar
Topo