R
RCAAP Rss Feeder
Guest
Breve resumo:
Info Adicional:
Autor:
Clica para continuares a ler...
The present study is focused on the ultrafast and green synthesis, via the co-precipitation method, of magnetic nanoparticles (MNPs) based on iron oxides using design of experiments (DOE) and high energy sonochemical approach, considering two main factors: amplitude (energy) of the ultrasound probe and sonication time. The combination of these techniques allowed the development of a novel one-minute green synthesis, which drastically reduced the amount of consumed energy, solvents, reagents, time and produced residues. This green sonochemical synthesis permitted to obtain mean particle sizes of 11 ? 2 nm under the optimized conditions of amplitude = 40% (2826 J) and time = 1 min. Their composition, structure, size, morphology and magnetic properties were assessed through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM & TEM), and vibrating sample magnetometry (VSM). The characterization results indicate the proper formation of MNPs, and the correct functionalization of MNPs with different coating agents. The functionalized MNPs were used as: i) biosensor, which could detect mercury in water in the range of 0.030?0.060 ppm, and ii) support onto which polyclonal antibodies were anchored and successfully bound to an osteosarcoma cell line expressing the target protein (TRIB2-GFP), as part of an immunoprecipitation assay.
Info Adicional:
The present study is focused on the ultrafast and green synthesis, via the co-precipitation method, of magnetic nanoparticles (MNPs) based on iron oxides using design of experiments (DOE) and high energy sonochemical approach, considering two main factors: amplitude (energy) of the ultrasound probe and sonication time. The combination of these techniques allowed the development of a novel one-minute green synthesis, which drastically reduced the amount of consumed energy, solvents, reagents, time and produced residues. This green sonochemical synthesis permitted to obtain mean particle sizes of 11 ? 2 nm under the optimized conditions of amplitude = 40% (2826 J) and time = 1 min. Their composition, structure, size, morphology and magnetic properties were assessed through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM & TEM), and vibrating sample magnetometry (VSM). The characterization results indicate the proper formation of MNPs, and the correct functionalization of MNPs with different coating agents. The functionalized MNPs were used as: i) biosensor, which could detect mercury in water in the range of 0.030?0.060 ppm, and ii) support onto which polyclonal antibodies were anchored and successfully bound to an osteosarcoma cell line expressing the target protein (TRIB2-GFP), as part of an immunoprecipitation assay.
Autor:
Clica para continuares a ler...