Analysis of Antibody Data Using Skew-normal and Skew-T Mixture Models: Accepted - March 2022

  • Criador do t贸pico RCAAP Rss Feeder
  • Start date
R

RCAAP Rss Feeder

Guest
Breve resumo:
Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.​



Info Adicional:
Gaussian mixture models, which assume a Normal distribution for each component, are popular in antibody (or serological) data analysis to help determining antibody-positive and antibody-negative individuals. In this work, we advocate using finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. These flexible mixing distributions have the advantage of describing right and left asymmetry often observed in the distributions of known antibody-negative and antibody-positive individuals, respectively. We illustrate the application of these alternative mixture models in a data set on the role of human herpesviruses in the Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.



Autor:




Clica para continuares a ler...
 
Voltar
Topo